详解Pyth,on中的序列化与反序列化的使用

发布时间:2017-10-26 16:05 来源:互联网 当前栏目:web技术类

   这篇文章主要介绍了详解Python中的序列化与反序列化的使用,针对pickle和cPickle对象进行了探究,需要的朋友可以参考下

  学习过marshal模块用于序列化和反序列化,但marshal的功能比较薄弱,只支持部分内置数据类型的序列化/反序列化,对于用户自定义的类型就无能为力,同时marshal不支持自引用(递归引用)的对象的序列化。所以直接使用marshal来序列化/反序列化可能不是很方便。还好,python标准库提供了功能更加强大且更加安全的pickle和cPickle模块。

  cPickle模块是使用C语言实现的,所以在运行效率上比pickle要高。但是cPickle模块中定义的类型不能被继承(其实大多数时候,我们不需要从这些类型中继承。)。cPickle和pickle的序列化/反序列化规则是一样的,我们可以使用pickle序列化一个对象,然后使用cPickle来反序列化。同时,这两个模块在处理自引用类型时会变得更加“聪明”,它不会无限制的递归序列化自引用对象,对于同一对象的多次引用,它只会序列化一次。例如:

  ?

1 2 3 4 5 6 7 8 import marshal, pickle   list = [1] list.append(list) byt1 = marshal.dumps(list) #出错, 无限制的递归序列化 byt2 = pickle.dumps(list) #No problem

  pickle的序列化规则

  Python规范(Python-specific)提供了pickle的序列化规则。这就不必担心不同版本的Python之间序列化兼容性问题。默认情况下,pickle的序列化是基于文本的,我们可以直接用文本编辑器查看序列化的文本。我们也可以序列成二进制格式的数据,这样的结果体积会更小。更详细的内容,可以参考Python手册pickle模块。

  下面就开始使用pickle吧~

  pickle.dump(obj, file[, protocol])

  序列化对象,并将结果数据流写入到文件对象中。参数protocol是序列化模式,默认值为0,表示以文本的形式序列化。protocol的值还可以是1或2,表示以二进制的形式序列化。

  pickle.load(file)

  反序列化对象。将文件中的数据解析为一个Python对象。下面通过一个简单的例子来演示上面两个方法的使用:

  ?

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 #coding=gbk   import pickle, StringIO   class Person(object):   '''自定义类型。   ''' def __init__(self, name, address): self.name = name self.address = address   def display(self): print 'name:', self.name, 'address:', self.address   jj = Person("JGood", "中国 杭州") jj.display() file = StringIO.StringIO()   pickle.dump(jj, file, 0) #序列化 #print file.getvalue() #打印序列化后的结果   #del Person #反序列的时候,必
  • 1、
  • 2、
  • 3、
  • 4、
  • 5、
  • 6、
  • 7、
  • 8、
  • 9、
  • 10、
  • 11、
  • 12、
  • 13、
  • 14、
  • 15、
  • 16、
  • 17、
  • 18、
  • 19、
  • 20、
  • 21、
  • 22、
  • 23、
  • 24、
  • 25、
  • 1、
  • 2、
  • 3、
  • 4、
  • 5、
  • 6、
  • 7、
  • 8、
  • 9、
  • 10、
  • 11、
  • 12、
  • 13、
  • 14、
  • 15、
  • 16、
  • 17、
  • 18、
  • 19、
  • 20、
  • 21、
  • 22、
  • 23、
  • 24、
  • 25、